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Multi-point velocity measurements have been performed in turbulent pipe flow
at ReD =1.5 × 105 and combined with cross-spectral and proper orthogonal
decomposition analysis to elucidate information on the structure of the large- and
very-large-scale motions in the outer layer of wall-bounded flows. The results indicate
that in the outer layer the large-scale motions (LSM) may be composed of detached
eddies with a wide range of azimuthal scales, whereas in the logarithmic layer they
are attached. The very-large-scale motions (VLSM) have large radial scales, are
concentrated around a single azimuthal mode and make a smaller angle with the wall
compared to the LSM. The results support a hypothesis that only the detached LSM
in the outer layer align to form the VLSM.

1. Introduction
Recent flow visualizations, numerical studies and particle image velocimetry

investigations have revealed the existence of large- and very-large-scale motions
in wall-flows. Large-scale motions (LSM) (Kim & Adrian 1999; Guala, Hommema &
Adrian 2006; Balakumar & Adrian 2007) are believed to be created by the vortex
packets formed when multiple hairpin structures travel at the same convective velocity
(Zhou et al. 1999). A characteristic feature of the LSM is that the hairpin structures
within the packet align in the streamwise direction and induce regions of low
streamwise momentum between the legs of the hairpin vortices (Adrian, Meinhart &
Tomkins 2000; Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian
2003; Hutchins, Hambleton & Marusic 2005). The LSM have a streamwise scale of
approximately 2–3 times the wall layer thickness and have been associated with the
occurrence of bulges of turbulent fluid at the edge of the wall layer. A thorough review
of the evidence supporting the existence of hairpin vortices and their organization
into packets is provided by Adrian (2007).

Meandering, low streamwise momentum fluid flanked by narrow regions of higher
momentum fluid has also been observed in the logarithmic and wake regions of wall-
flows (Kim & Adrian 1999; Tomkins & Adrian 2005; Guala et al. 2006; Balakumar &
Adrian 2007; Hutchins & Marusic 2007b; Monty et al. 2007). In internal flows, the
motions are typically referred to as very-large-scale motions (VLSM), whereas in
external flows they are more commonly referred to as ‘superstructures’. Both VLSM
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and superstructures have been found to be much longer than the sublayer streaks and
scale on outer variables rather than inner variables. Although the spanwise/azimuthal
meandering of these regions makes it difficult to determine their typical streamwise
extent, hot-wire rake measurements in channels and pipes (Monty et al. 2007) have
found instances of VLSM in internal flows as long as 20 times the channel half-height
or pipe radius, while similar experiments in boundary layers (Hutchins & Marusic
2007b) show that the superstructures tend to be shorter, with a typical length of
about 6 times the boundary layer thickness (as inferred from frequency spectra). In
addition, Monty et al. (2009) note that the superstructures in boundary layers appear
to be limited to the logarithmic region, whereas for internal geometries the VLSM
are found to persist well into the outer layer. In contrast, Tutkun et al. (2009) found
evidence of weak elongated structures within boundary layers out to the edge of the
layer. The origin of the VLSM and superstructures is not yet clear. Kim & Adrian
(1999) proposed that the VLSM are caused by pseudo-streamwise alignment of the
LSM, whereas Del Álamo & Jiménez (2006) suggested they could be formed by linear
or nonlinear instabilities.

Spectral analysis of the large- and very-large-scale motions indicates that they
make a non-negligible contribution to the turbulent kinetic energy and Reynolds
stress production (Guala et al. 2006; Balakumar & Adrian 2007), which distinguishes
them from the inactive motions proposed by Townsend (1976). A careful analysis
of DNS data has also revealed the footprint of the outer-scaled motions within
the inner-scaled inner layer (Hoyas & Jiménez 2006; Hutchins & Marusic 2007a ,b),
and Mathis, Hutchins & Marusic (2009) found modulation of the near wall cycle
by long wavelength motions further from the wall, which is supported by the
correlations measured by Tutkun et al. (2009). These results suggest that motions in
the logarithmic and outer layer may have a strong influence on the behaviour of the
near-wall turbulence.

The LSM and VLSM have therefore proven to be important features of turbulent
wall-flows. To improve our understanding of these flow features, Bailey et al. (2008)
performed a cross-spectral analysis of the azimuthal scales of LSM and VLSM in
pipe flow, and the objective of the current investigation is to build on that work
by investigating their wall-normal scales within the logarithmic and wake regions.
To this end, multi-point velocity measurements were obtained and analysed using
cross-spectral analysis and proper orthogonal decomposition (POD).

2. Experiment description
2.1. Experimental facility

The experiments were conducted in the Princeton University/Office of Naval Research
Superpipe facility (Zagarola 1996; Zagarola & Smits 1998). The facility consists of
a closed return pressure vessel containing a long test pipe downstream of flow
conditioning and heat exchanging sections. By driving air compressed at up to 200
atm through the test pipe, fully developed pipe flow is generated over a wide Reynolds
number range, from ReD =3.1 × 104 to 3.5 × 107, where D is the pipe diameter, 〈U〉
is the area-averaged velocity and ν is the kinematic viscosity.

The current experiments were conducted in a commercial steel pipe with an average
inner diameter of 129.84 mm and an overall length of 200 D. The interior surface finish
of the pipe has a root mean square roughness height of krms = 5 μm and an equivalent
sand grain roughness of ks � 1.6 krms . Further details of this test pipe, including mean
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Figure 1. Sketch illustrating experimental geometry and nomenclature.

flow measurements and surface profilometry are given by Langelandsvik, Kunkel &
Smits (2008).

2.2. Instrumentation

Measurements were performed using two single-sensor hot-wire probes with tungsten
wires of 2.5 μm diameter and 0.5 mm sensing length. Both probes were mounted on
a traversing system positioned 196 D downstream of the pipe inlet, with the probe
sensors aligned in the wall-normal direction. The traversing system was designed
such that a single probe, used as a reference probe, could be positioned at a fixed
wall-normal distance r from the probe centreline while a second traversing probe
could be positioned at a radial location r ′, with radial separation between the two
probes of Δr . The traversing probe could be rotated azimuthally to an arbitrary
angular separation Δθ with respect to the reference probe. The traversing probe
was driven at a 1:1 gear ratio by a high resolution stepper motor, located outside
the test pipe and operated in micro-step mode, resulting in an angular positioning
resolution of ±0.0018◦. The traverse geometry is illustrated in figure 1. Also shown
are the orientations of the radial and wall-normal positions of the fixed and traversing
probes, the angular separation, Δθ , and azimuthal separation distance, Δs = r ′Δθ .
The effect of probe blockage and asymmetry of the traverse path introduced by the
traverse was evaluated by Bailey et al. (2008).

The frequency response of both probes was always greater than 70 kHz. The
anemometer output was filtered at 10 kHz (fourth-order Butterworth filter) and
digitized at 20 kHz for 180 s long samples using a 16-bit simultaneous sample and
hold A/D board (National Instruments PCI-6123).

The test pipe was instrumented with 21 pressure taps, separated by 165.1 mm in the
streamwise direction and connected through a 40 port pressure scanner to a 133.3 Pa
(1 Torr) pressure transducer. These taps were used to determine the streamwise
pressure gradient and hence the friction velocity, uτ =

√
(−dp/dx)D/4�, where � is

the air density.
Probe calibration was performed in situ before each measurement run using a Pitot

probe located at the pipe centreline. During calibration, the centreline velocity, Ucl ,
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and friction velocity were measured. The mean velocity at the probe radial position
was then found using the outer-scaled velocity profile data of Langelandsvik et al.
(2008). As the outer scaling is relatively insensitive to Reynolds number for y/R > 0.07,
and calibrations needed to be performed over only a relatively narrow velocity range
(corresponding to ReD between approximately 1 × 105 and 2 × 105), this technique
provided an accurate relationship between mean centreline velocity and mean velocity
at the probe measurement position. For example, the values of (U − Ucl)/uτ , in the
range 0.1 <y/R < 0.5, measured by McKeon et al. (2004) and Langelandsvik et al.
(2008) at ReD = 7.5 × 104 and 2.2 × 105 differed from Langelandsvik et al ’s values for
ReD = 1.5 × 105 by only 2.5 % to 5 %.

After correcting the measured bridge voltage for temperature changes (typically less
than 0.5◦C) using the correction described in Tavoularis (2005), a least-squares fit of
the calibration data to King’s law (with an exponent of 0.45) was used to determine the
velocity measured by the probe, U+(t) = U (t)/uτ . This calibration technique yielded
first-order statistics that were all within 3 % of values previously measured in the
same facility and second-order statistics within 6 %.

2.3. Measurement conditions

Using the Reynolds number independence in azimuthal scale observed by Bailey
et al. (2008) as a guide, measurements were performed at a single Reynolds number of
1.5×105, corresponding to the hydraulically smooth flow regime (Langelandsvik et al.
2008). At this Reynolds number, the measured friction velocity was 0.8 m s−1, resulting
in Reτ = Ruτ/ν of 3.4 × 103, viscous length ν/uτ = 20 μm, and k+

s = ksuτ /ν =0.4.
Measurement positions were selected to allow POD of the velocity field following

Tutkun, Johansson & George (2008). Data were taken at five wall-normal stations
located 0.1R, 0.2R, 0.3R, 0.4R and 0.5R from the wall, with fixed probe wall-normal
distance denoted by y and traversing probe distance denoted by y ′ (corresponding
to radial positions r and r ′). The results of Langelandsvik et al. (2008) indicate that
these measurement positions are within the logarithmic layer at 0.1R and extend into
the wake region with the upper edge of the logarithmic region around 0.2R. For each
y/R position of the fixed probe, measurements were performed with the traversing
probe at all five y ′/R stations with the probe traversed unidirectionally from Δθ = 5◦

to Δθ = 180◦ at 5◦ increments for each y ′/R location. Additional measurements were
made at Δθ = 0◦ to complete the mapping of the measurement region from 0.1R

to 0.5R from the wall and Δθ = 0◦ to Δθ = 180◦ for each y/R position of the fixed
probe. Symmetry conditions were used to extend this mapping from Δθ = 180◦ to
360◦, since measurements performed with the reference probe at r separated by Δθ

from the traversing probe at r ′ were equivalent to the measurements made with the
reference probe at r ′ separated from the traversing probe at r by −Δθ .

3. Results and discussion
3.1. Autospectra

The pre-multiplied autospectrum calculated from the fixed reference probe is shown in
figure 2 for each measured wall-normal position. The contributions by the LSM and
VLSM to the energy are evident as localized peaks in the autospectra, indicated by
dashed lines in figure 2. Guala et al. (2006) found that the VLSM occur at 2πf R/U < 2
and LSM at 2πf R/U > 2, whereas from figure 2 VLSM occurring at <1 and LSM
>1 would appear more appropriate. Guala et al. (2006) determined their wavenumber
range by examining spectra from as close to the wall as y/R = 0.05, so this difference
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Figure 2. Pre-multiplied autospectra measured by fixed probe at different wall-normal
positions with wavenumber calculated using (a) local mean velocity and (b) area-averaged
velocity.
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ponding peak in pre-multiplied autospectra. Hollow symbols show wavelength estimated using
local mean for convection velocity, solid symbols use area-averaged velocity. The line is power
law of Monty et al. (2009) for VLSM wavelength.

in selected wavenumber range for each motion is most likely explained by the growth
of both VLSM and LSM wavelengths with increased distance from the wall.

In figure 2(a), the streamwise wavenumber is estimated from frequency f by
Taylor’s hypothesis using the local mean velocity, as 2πf/U , whereas in figure 2(b)
the streamwise wavenumber is estimated using the area-averaged velocity, as 2πf/ 〈U〉.
The wavelengths corresponding to the peaks in the autospectra are shown in figure 3
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Figure 4. Correlation coefficient, ρ(r, r ′,Δθ, 0)/ρ(r, r, 0, 0), across measurement plane with
reference probe at (a) y/R = 0.1, (b) y/R = 0.2, (c) y/R = 0.3, (d ) y/R = 0.4 and (e) y/R = 0.5.
Contour spacing is 0.05 with negative values indicated by dashed lines; contour lines at zero
are not shown for clarity. Dash-dotted lines delineate measurement extent.

for both the VLSM and LSM peaks. When the local mean velocity is used as an
estimate of the local convection velocity, the VLSM wavelength is well represented
by the power law of Monty et al. (2009):

λvl

R
= 23

(
y

R

)2/7

. (3.1)

However, when the wavelength is estimated using 〈U〉, the wavelengths of VLSM and
LSM remain approximately constant for y/R > 0.2 at approximately 16R and 2.9R,
respectively. This result supports the notion that the peaks at different wall-normal
positions correspond to the same coherent motions (which would be expected to travel
at the same convection velocity). The actual streamwise wavenumber of these motions,
however, cannot be estimated from these figures because the mean convection velocity
for each of these motions is unknown. Finding this convection velocity is not a trivial
task, but it is important because the validity of Taylor’s hypothesis decreases as the
wavelength of the motions increases (cf. Dennis & Nickels 2008).

3.2. Cross-correlation

The cross-correlation measured between the two signals was calculated according to

ρ(r, r ′, Δθ, τ ) = u+(r, r, 0, t)u+(r, r ′, Δθ, t + τ ), (3.2)

where the overbar indicates a time average, r is the radial position of the reference
probe, r ′ is the radial position of the traversing probe and u+ = U+ − U+. For
Δθ > 180◦, symmetry conditions give ρ(r, r ′, Δθ, τ ) = ρ(r ′, r, −Δθ, −τ ).

Figure 4 shows a contour map of the correlation in the cross-stream measurement
plane at τ = 0 for each of the five reference probe wall-normal positions, normalized
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function of time-lag when reference probe is at (a) y/R = 0.5, (b) y/R = 0.4, (c) y/R = 0.3,
(d ) y/R = 0.2 and (e) y/R =0.1.

by the variance measured by the reference probe, ρ(r, r, 0, 0). The profiles of the
correlation coefficient at Δr = 0 (when both probes are on the same azimuthal plane)
are consistent with those previously reported for pipe, channel and boundary layer
flows (Monty et al. 2007; Bailey et al. 2008), and the characteristic region of negative
correlation is attributed to the presence of coherent motions. Figure 4 clearly illustrates
the large spatial scale of the coherent motions, underscoring their importance in the
structure of the turbulence. It is also interesting to note that there is no apparent
correlation observed within the range |Δθ > 90◦|, suggesting that these structures are
not periodic in the azimuthal direction and that minimal interactions occur between
motions on opposite sides of the pipe.

An estimate of the angle of inclination of the coherent motions can be found
by examining the planes of ρ(r, r ′, 0, τ )/ρ(r, r, 0, 0) at different values of r , where
a coarse estimate of the streamwise scale can be found using Taylor’s hypothesis
with a convection velocity of 〈U〉. These planes, shown in figure 5, show that the
local inclination angle depends on wall-normal position of the reference probe. As
the reference position moves away from the wall, the inclination changes between
22◦ and 80◦, depending on Δr and τ . These angles and their variation with wall
distance are within the ranges observed for hairpin packet growth angle (Adrian
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2007) and previous correlation results (cf. Favre, Gaviglio & Dumas 1957, 1958;
Kovasznay, Kibens & Blackwelder 1970; Alving, Smits & Watmuff 1990; Tutkun
et al. 2009). However, as discussed by Marusic & Heuer (2007), a structure angle can
be defined using a reference position at the wall, resulting in a Δr and Reynolds
number independent angle of approximately 15◦ for boundary layers. In the current
study, the structure angle is estimated using the correlation with the reference probe
located at the nearest point to the wall (y/R = 0.1), resulting in an estimated angle of
approximately 20◦ relative to the wall.

3.3. Spectral filtering

Cross-correlation results, such as those presented above, are time-averaged quantities
and therefore contain contributions from both VLSM and LSM. To investigate the
contributions from each type of motion, we note that the cross-correlation can be
written as

ρ(r, r ′, Δθ, τ ) =

∫ ∞

0

[C(r, r ′, Δθ) cos(2πf τ ) + Q(r, r ′, Δθ) sin(2πf τ )] df, (3.3)

where C(r, r ′, Δθ) and Q(r, r ′, Δθ) are the real and imaginary components of the
cross-spectrum, respectively (Bendat & Piersol 2000). Hence, it becomes possible
to estimate the contribution to the cross-correlation from specific frequency or
wavenumber ranges. With reference to figure 2, the contribution from the VLSM, ρvl ,
was estimated by calculating ρ from 3.3) within the range 2πf R/ 〈U〉 < 1. Similarly,
the contribution from the LSM, ρvl , was estimated by repeating the calculation over
the range 1< 2πf R/ 〈U〉 < 10. These cutoff wavenumber values were selected based
on the POD results discussed in § 3.4, whereby the low wavenumber value was selected
to be at the valley between the VLSM and LSM peaks and the high wavenumber
cutoff being an upper bound of wavenumbers containing energy from the LSM. This
definition differs slightly from that used by Guala et al. (2006), who considered all
contributions from wavenumbers 2πf R/U > 2 to be from the LSM (the effects of
choosing different cutoff values is investigated below).

Figure 6 shows isocontours of ρvl and ρl within the transverse measurement plane
for τ =0. Although the abrupt cutoff incurred as a result of the spectral filtering will
cause longer LSM to contribute to ρvl and shorter VLSM to contribute to ρl , the
results are expected to provide a broad estimate of the average transverse scale of
each type of motion. In this figure ρvl and ρl are shown normalized by ρ(r, r, 0, 0),
the integral of the entire auto-spectrum measured by the reference probe. Hence, this
normalization provides an estimate of the relative energy contained in the VLSM
and LSM at the reference probe location. Although the magnitudes of ρvl and ρl

are similar, the larger scale of the VLSM causes these motions to dominate the
cross-correlation.

When the reference probe is located far from the wall, the LSM appear to have
little or no correlation with the motions near the wall, suggesting that in the outer
layer these motions are ‘detached’ from the wall. Here we use the term ‘detached to
indicate simply that the correlations no longer extend all the way to the wall, and
that the motions making up the correlation no longer scale with the distance to the
wall, Hence, there are at least two types of LSM: those that are attached to the wall,
and those that are detached from the wall.

When the reference probe is located near the wall, there are significant differences
in the transverse scale of the VLSM and LSM, which supports the suggestion made
by Bailey et al. (2008) that the VLSM are not necessarily formed by the streamwise
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Figure 6. Estimates of ρvl(r, r
′,Δθ, 0) and ρl(r, r

′,Δθ, 0) normalized by ρ(r, r, 0, 0) with
reference probe at different wall-normal positions. Contour spacing is 0.04 with negative
values indicated by dashed lines and contour at zero removed for clarity.

alignment of the LSM that occur near the wall. However, the azimuthal scale of
the LSM when the reference probe is located at y/R =0.5 (figure 6e), is of the same
order of the azimuthal scale of the VLSM observed when the reference is at y/R = 0.1
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Figure 7. Estimates of ρvl(r, r
′,Δθ, 0) and ρl(r, r

′,Δθ, 0) normalized by ρ(r, r, 0, 0) using the
wavenumber ranges for VLSM and LSM proposed by Guala et al. (2006). For ρvl the contour
spacing is 0.04 whereas for ρl the contour spacing is 0.02. Negative values indicated by dashed
lines and contour at zero removed for clarity.

(figure 6a), which means that the VLSM could form from pseudo-alignment of larger,
older, detached LSM rather than the smaller LSM located near the wall. Note that the
correlations reflect only the average scale of each type of motion and that individual
LSM near the wall could have an azimuthal scale comparable to that of the VLSM
and align to form the VLSM or, alternatively, the alignment process could widen the
LSM involved.

To assess the influence of the spectral filter ranges, the filtering was repeated using
the cutoff values proposed by Guala et al. (2006), where ρvl is estimated by integrating
the cross-spectrum up to 2πf R/U = 2 and ρl is estimated by integrating over the
remaining wavenumbers. The results are shown in figure 7 for the reference probe at
y/R =0.1 and 0.5. When compared to the results in figure 6, it is apparent that the
magnitudes of ρvl and ρl are affected by changing the filter ranges, but the spatial
scale of the correlations remain largely unaffected.

Isocontours of ρvl and ρl in the streamwise–wall-normal plane are shown in figures 8
and 9 respectively. Comparing these figures reveals clear differences between the
VLSM and LSM. Most striking is the presence of negatively correlated regions
upstream and downstream of the LSM, which are not evident for the VLSM. The
distance between the negatively correlated regions suggests a streamwise length scale
of the LSM between 1–2R. Note that regions of τ 〈U〉 /R in the range ±10 were
inspected but are not shown on figures 8 and 9 for clarity.

An estimate for the differences in the structure angle of each type of motion can be
found using the time lag, τmax , at which the maximum value of ρvl and ρl occurs for
each Δr when Δθ = 0 and the reference probe is at y/R = 0.1. The results are shown
in figure 10. When area-averaged velocity is used as a convection velocity, the VLSM
structure angle appears to be approximately 14◦, much smaller than that of the LSM
which is closer to 24◦. One potential explanation for this difference might be found in
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the earlier observation that within the outer layer the LSM are composed largely of
detached eddies, whereas the VLSM extend to the wall. Thus the VLSM are expected
to experience higher levels of shear relative to that experienced by the detached LSM.
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It is also possible, as suggested earlier, that the convection velocities of these two
types of motions are different. If we assume that the actual inclination angles of
the two motions are approximately the same, then the convection velocity of the
LSM needs to be about twice that of the VLSM. This difference in convection
velocities may occur if the VLSM are comprised largely of wall-attached eddies and
the LSM are composed largely of detached eddies (although a factor of two seems
unlikely). In turn, this implies that the streamwise wavenumber spectra would be very
different from the autospectra shown in figure 2, underscoring the danger inherent in
assuming Taylor’s hypothesis for long wavelength motions (Dennis & Nickels 2008).
In all likelihood, the differences in streamwise–wall-normal angle observed between
figure 10 can be attributed to a combination of both effects, that is, increased shear
across the VLSM and differences in convection velocity between the two motions.

The streamwise–wall-normal isocontours of ρvl and ρl shown in figures 8 and 9
reveal a remarkable similarity for different reference probe locations, which is true for
both the VLSM and LSM. This similarity is highlighted in figures 11 and 12, where
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the contours are collected onto the same plot. This scale-independence suggests the
interesting possibility that within the outer layer the streamwise–wall-normal scale of
the structures no longer depends on the distance from the wall, in contrast to the
behaviour of the azimuthal scale which grows with y. Furthermore, figure 11 indicates
that the wall-normal scale of the VLSM is on the order of R, so that these motions
are expected to influence behaviour near the wall even when they are near the edge
of the wall layer.

3.4. Proper orthogonal decomposition

POD analysis provides a means to determine the distribution of energy amongst
different modes, and can help to identify the most energetic motions in a flow. Unlike
the autospectra, which illustrate the energy distribution at a single point in space, the
POD results represent the energy distribution across the entire measurement plane
and therefore allow an evaluation of the coherence and importance of the VLSM and
LSM within the flow field.

POD was performed following the procedure outlined in Tutkun et al. (2008) for
azimuthally homogeneous flows, and the procedure will only be briefly summarized
here. For consistency, their nomenclature will also be maintained. The POD modes
were determined using the following procedure:

(a) The cross-spectra between each pair of measurement locations, S̃(r, r ′; Δθ; f )
was calculated from the complex conjugate of the Fourier transforms of u+ measured
by the probes at r and r ′ with angular separation Δθ;

(b) A Fourier series expansion was performed on S̃(r, r ′; Δθ; f ) in the azimuthal
direction to determine S(r, r ′; m; f ), where m is the azimuthal mode;

(c) The eigenvalues λ(n)(m; f ) and eigenspectra φ(n)(r; m; f ) were determined from∫
r ′

W (r, r ′; m; f )φ̂∗(n)(r ′; m; f ) dr ′ = λ̂(n)(m; f )φ̂(n)(r; m; f ) (3.4)

where to achieve Hermitian symmetry:

W (r, r ′; m; f ) = r1/2S(r, r ′; m; f )r ′1/2, (3.5)

φ̂∗(n) = φ∗(n)(r ′; m; f )r ′1/2, (3.6)

φ̂(n) = r1/2φ(n)(r ′; m; f ) (3.7)

and

λ̂(n)(m; f ) = λ(n)(m; f ). (3.8)

The analysis produces eigenvalues λ representing the radial mode n, ordered by the
most to least energetic, distributed in frequency f and azimuthal Fourier mode m,
which are ordered from longest to shortest wavelengths. Furthermore, the cross-
spectra S(r, r ′; m; f ) can be reconstructed from

r1/2S(r, r ′; m; f )r ′1/2 = W (r, r ′; m; f ) =

N∑
n=1

λ(n)φ̂∗(n)(r ′; m; f )φ̂(n)(r; m; f ) (3.9)

and ρ(r, r ′; Δθ; τ ) can be recovered by performing inverse Fourier transforms on
S(r, r ′; m; f ). Thus, POD can also be used as a form of filter by selecting which radial
modes, azimuthal modes, and frequencies to use to reconstruct the cross-spectra.

The sum of the streamwise velocity contribution to the kinetic energy within the
measurement plane can be recovered by summing the eigenvalues over all frequencies,
as well as all azimuthal and radial POD modes, allowing the fraction of kinetic energy
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Figure 13. Fraction of kinetic energy contained within (a) radial and (b) azimuthal modes.

contained within an azimuthal and radial mode to be estimated through

ξ (n)(m) =

∫ ∞

0

λ(n)(m, f ) df

M−1∑
m=0

N∑
n

∫ ∞

0

λ(n)(m, f ) df

(3.10)

(Tutkun et al. 2008) where M is the number of azimuthal modes and N is the number
of radial modes.

Figure 13(a) shows the energy content contained within each radial mode as
determined through

∑M−1
0 ξ (n)(m). Approximately 75 % of the energy is contained in

radial mode 1. The distribution of energy amongst the azimuthal modes is shown in
figure 13(b) for each of the radial modes as well as for the sum over all radial modes.
Unlike the radial modes, there is no dominant azimuthal mode, with most of the
energy contained within the range m < 20, concentrated around m =3.

An illustration of the scale of motions contained in n= 1, m = 3 can be found by
applying (3.9) using only these modes. Figure 14 shows the reconstructed correlation
map for τ = 0 with the reference probe at y/R =0.1. The results clearly show the
similarity in the scale between n= 1, m =3 and ρvl(r, r

′, Δθ, 0) shown in figure 6.
The distribution of energy within radial mode 1 and azimuthal modes 0 to 20

is illustrated using isocontours of the eigenvalues in figure 15. To better reflect the
wavenumbers where the majority of the energy content lies, and to better compare
the results to the pre-multiplied autospectra results, the eigenvalues are shown pre-
multiplied by the frequency normalized by 2πf R/ 〈U〉. Also shown in figure 15 are the
pre-multiplied autospectra previously shown in figure 2 to allow easy identification
of the VLSM and LSM wavenumber ranges.

The results indicate that, in general, motions with wider azimuthal scales have
longer wavelengths. In addition, localized peaks in λ(1) are evident in azimuthal
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Figure 14. Reconstructed correlation map for n= 1, m= 3 with the reference probe at
y/R = 0.1 and τ = 0, normalized by ρ(r, r, 0, 0). Contour levels at 0.01, with negative values
indicated by dashed lines and zero contour not shown for clarity.
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Figure 15. Isocontours of pre-multiplied eigenvalues, (2πf/ 〈U〉)λ(1)(m, f ), distributed across
azimuthal modes and normalized frequency, 2πf/ 〈U〉. Isocontours separated by 2.5 × 10−7

with contours below 5 × 10−7 are not shown for clarity. Autospectra calculated from fixed
probe at different wall-normal positions are shown in (a) for comparison.

mode 3 at values of 2πf R/ 〈U〉 corresponding to the VLSM and LSM peaks in the
autospectra. The largest values of λ(1) are distributed around these peaks, indicating
that a large portion of the kinetic energy within the measurement plane is contained
within the VLSM and LSM. The majority of energy is contained within the frequency
range 2πf R/ 〈U〉 < 10, with the VLSM peak appearing predominantly in the range
2πf R/ 〈U〉 < 1. Thus, these values were used to select the wavenumber ranges applied
during spectral filtering (§ 3.3).



354 S. C. C. Bailey and A. J. Smits

When examining the eigenvalue distribution in figure 15, there is no clear delineation
between the VLSM and LSM. Nevertheless, the VLSM appear to be concentrated
within the lower azimuthal modes (around azimuthal mode 3), which is consistent
with the large transverse scales observed in the spectrally filtered results. Conversely,
the LSM appear to be distributed over a larger range of azimuthal scales, which
suggests that they do not have a dominant transverse scale and are composed of
motions encompassing a wide range of streamwise and transverse scales.

The VLSM concentration around azimuthal mode 3 is an interesting result
considering the findings of Faisst & Eckhardt (2003), who predict that nonlinear
travelling wave instabilities in laminar pipe flow could lead to turbulence transition.
They find that travelling waves with threefold azimuthal symmetry are the first
to appear with increasing Reynolds number, with additional azimuthal symmetries
appearing with increasing Reynolds number. States with up to sixfold symmetry have
been observed experimentally by Hof et al. (2004). This range appears similar to the
range of azimuthal modes observed at VLSM wavenumbers in figure 15, supporting
the possibility that the VLSM result from the persistence of unstable travelling waves
which form during transition and persist into the turbulent flow regime.

There are several inconsistencies, however, that prevent embracing this mechanism
as the VLSM source. First, the travelling waves are expected to form within laminar
flow but are themselves inherently unstable, thus it is questionable that these modes
could persist in turbulent flow where the mean shear is much different. Second,
the wavelengths observed by Faisst & Eckhardt (2003) are much shorter than that
of the VLSM (although the wavelength of the instability is Reynolds number and
azimuthal mode dependent, generally increasing with higher Reynolds number and
decreasing with azimuthal mode). Finally, Faisst & Eckhardt (2003) note a difference
between the wavelengths of the travelling waves between pipe and plane Couette
flows, but Monty et al. (2009) show that the peak in the autospectra corresponding
to the VLSM wavelength is strikingly similar for pipes and channels at high
Reynolds numbers. Therefore, unless these discrepancies between high Reynolds
number turbulent observations of VLSM and observations made at low Reynolds
number can be resolved, it would appear unlikely that these phenomena are related,
at least for travelling waves of the form reported by Faisst & Eckhardt (2003) and
Hof et al. (2004).

4. Conclusions
Multi-point, one-component velocity measurements in a smooth-walled pipe flow at

ReD = 1.5×105 support the hypothesis that the LSM peak observed in the autospectra
correspond to the hairpin packet model proposed by Adrian (2007), whereby a packet
of hairpin vortices induces a region of uniform momentum, which is inclined to
the wall at an angle related to the growth rate of the hairpin packet. Spectrally
filtered cross-correlations suggest that in the outer layer these packets are composed
of detached eddies which have little correlation with the flow near the wall, and the
POD results indicate that they occur across a wide range of azimuthal scales. Within
the logarithmic region, it appears more likely that these LSM are attached to the
wall. The autospectra certainly suggest that the LSM in the outer layer (y/R > 0.1)
travel with a common convection velocity which is larger than that of the LSM in
the overlap region (y/R < 0.1).

The VLSM peak in the autospectra is connected to structures with a large azimuthal
scale of approximately one third of the circumference of the pipe, that is, about
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one diameter. These structures also have large radial scales which result in a strong
correlation with motions near the wall, supporting the hypothesis that these structures
are associated with the modulation of the near wall-flow observed by Hutchins &
Marusic (2007b) and Mathis et al. (2009). This larger radial scale also appears to result
in the structures becoming stretched to give smaller inclination angles with respect
to the wall than what was observed for the LSM, probably due to the increased
deformation across these larger radial scales associated with the mean shear.

The lack of clear delineation between the LSM and VLSM in the POD results
suggests that these two motions are interrelated. The similarity between the azimuthal
scale of the LSM in the outer layer and the VLSM within the overlap layer supports
the observation by Bailey et al. (2008) that if the VLSM are caused by the streamwise
alignment of the LSM, only the LSM in the outer layer are aligning to create these
motions. Further evidence for this mechanism can be found in the autospectra which
show the increased energy within the LSM compared to the VLSM with increasing
distance from the wall, indicating that the detached LSM appear to occur further
from the wall than do the VLSM and hence would be above them. In contrast, near
the wall, the LSM are attached to the wall, move at a different convection velocity
and have much smaller transverse scales than the VLSM, and they are unlikely to be
involved in the formation of VLSM.
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